J. Phys.: Condens. Matter 16 (2004) 3005-3013

# LiSrAlF<sub>6</sub> with the LiBaCrF<sub>6</sub>-type structure

Andrzej Grzechnik<sup>1,5</sup>, Vladimir Dmitriev<sup>2</sup>, Hans-Peter Weber<sup>2,3</sup>, Jean-Yves Gesland<sup>4</sup> and Sander van Smaalen<sup>1</sup>

<sup>1</sup> Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth, Germany <sup>2</sup> Group 'Structure of Materials under Extreme Conditions', Swiss-Norwegian Beamlines, European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble cedex, France <sup>3</sup> Laboratoire de Cristallographie, EPFL/SB/IPMC/LCR, École Polytechnique Fédéral de Lausanne, CH-1015 Lausanne, Switzerland

<sup>4</sup> Université du Maine-Cristallogenese, F-72025 Le Mans cedex, France

E-mail: andrzej@uni-bayreuth.de

Received 16 February 2004 Published 23 April 2004 Online at stacks.iop.org/JPhysCM/16/3005 DOI: 10.1088/0953-8984/16/18/001

### Abstract

The crystal structure of LiSrAlF<sub>6</sub>-III ( $P_{21}/c$ , Z = 4) occurring above 3.0 GPa at room temperature was studied with synchrotron angle-dispersive x-ray powder diffraction in a diamond anvil cell. It was solved by combining a global optimization and a topological analysis with the Rietveld method using rigidbody AlF<sub>6</sub> geometrical constraints. LiSrAlF<sub>6</sub>-III, related to LiBaCrF<sub>6</sub> ( $P_{21}/c$ , Z = 4), is built of deformed SrF<sub>12</sub> icosahedra within a three-dimensional framework of corner-sharing distorted AlF<sub>6</sub> octahedra and LiF<sub>4</sub> tetrahedra, whereas the low-pressure phases I ( $P\overline{3}1c$ , Z = 2) and II ( $P_{21}/c$ , Z = 4) have cations exclusively in distorted octahedral coordinations. The pressure-induced changes of the coordination polyhedra in the series LiSrAlF<sub>6</sub>-I, LiSrAlF<sub>6</sub>-II to LiSrAlF<sub>6</sub>-III are similar to the differences in coordination polyhedra due to the increase of the ionic radii of the Sr<sup>2+</sup> and Ba<sup>2+</sup> cations in LiSrAlF<sub>6</sub>-I and LiBaM"F<sub>6</sub> (M" = Al, Ga, Cr, V, Fe, or Ti) at ambient conditions. These observations are discussed on the basis of the high-pressure high-temperature systematics in AB<sub>2</sub>X<sub>6</sub> compounds.

(Some figures in this article are in colour only in the electronic version)

## 1. Introduction

The crystal structures and topologies of  $MM'M''F_6$  fluorides at ambient conditions are usually interpreted as close packings of  $F^{1-}$  anions with the cations occupying available voids [1]. The actual structure type is governed by the relative sizes of the cations. If a fluoride comprises large

<sup>5</sup> Author to whom any correspondence should be addressed.

0953-8984/04/183005+09\$30.00 © 2004 IOP Publishing Ltd Printed in the UK

cations, an alternative description has been given in terms of packings of the  $M''F_6^{3-}$  complex ions with the M and M' atoms in the voids. The colquirite family of fluoride compounds  $LiM'M''F_6$  (M' = Ca or Sr; M'' = Al, Ga, or Cr), with each cation at a deformed octahedral site within the hcp arrangement of fluorines ( $P\overline{3}1c$ , Z = 2), belongs to this group [2]. LiSrAlF<sub>6</sub> is an ordered derivative of the Li<sub>2</sub>ZrF<sub>6</sub> structure type ( $P\overline{3}1m$ , Z = 1). The stability and distortions of the colquirite structure at atmospheric conditions have been previously discussed on the basis of ionic radii [2, 3]. The compounds LiBaM''F<sub>6</sub> (M'' = Al, Ga, Cr, V, Fe, or Ti;  $P2_1/c$ , Z = 4) do not possess this structure [4]. Instead, Ba atoms are in icosahedral coordination by F atoms within a framework of corner-linked LiF<sub>4</sub> tetrahedra and M''F<sub>6</sub> octahedra [4]. On the other hand, when the M' atoms are Mg, Mn, Co, Ni or Zn, the LiM'M''F<sub>6</sub> fluorides have the trirutile ( $P4_2/mnm$ , Z = 2) or Na<sub>2</sub>SiF<sub>6</sub> (P321, Z = 3) type structures, with all the cations octahedrally coordinated to fluorines.

Our interest in LiSrAlF<sub>6</sub> ( $P\overline{3}1c$ , Z = 2) arises from the fact that it is considered to be the most promising class of materials for optical applications like laser hosts and scintillating materials [2, 3, 5]. Recently, we have reported the high-pressure structure LiSrAlF<sub>6</sub>-II ( $P2_1/c$ , Z = 4) that is a distorted variant of the ambient pressure polymorph (LiSrAlF<sub>6</sub>-I) stable between 1.6 and 3.0 GPa [6]. LiCaAlF<sub>6</sub> transforms to an isostructural polymorph II above about 7 GPa. The understanding of pressure-induced phase transitions, structures and optical properties of the colquiriite materials could be improved by further investigations of the transformations involving changes in coordination spheres of the cations. Phonon energies, influencing luminescence efficiencies [5], are structure dependent and could be lowered by pressure-induced phase transitions to the polymorphs with increased coordination numbers around luminescent sites. In this paper, we report on the crystal structure of LiSrAlF<sub>6</sub> above 3.0 GPa studied *in situ* in a diamond anvil cell with synchrotron angle-dispersive x-ray powder diffraction. We also discuss the high-pressure high-temperature systematics of the AB<sub>2</sub>X<sub>6</sub> compounds.

#### 2. Experimental details

A single crystal of LiSrAlF<sub>6</sub>, grown by the Czochralski method, was ground into a fine powder in ethanol and loaded into a diamond anvil cell with argon as a pressure transmitting medium. Angle-dispersive powder x-ray diffraction patterns were measured at room temperature on the Swiss-Norwegian Beamlines at the European Synchrotron Radiation Facility (BM1A, ESRF, Grenoble, France). Monochromatic radiation at 0.71998 Å was used for data collection on an image plate (MAR345). The images were integrated using the program FIT2D [7] to yield diagrams of intensity versus  $2\theta$ . The ruby luminescence method [8] was used for pressure measurements.

#### 3. Results and discussion

Diffraction patterns of LiSrAlF<sub>6</sub> at different pressures are shown in figures 1 and 2. Between 1.6 and 3.0 GPa upon compression at room temperature, the stable structure is LiSrAlF<sub>6</sub>-II ( $P2_1/c$ , Z = 4) [6]. Above 3.0 GPa (figure 1), there occurs a phase transition to another modification of LiSrAlF<sub>6</sub>, here called LiSrAlF<sub>6</sub>-III (figure 1). The lower (II) and higher (III) pressure phases coexist at least up to 5.7 GPa.

Structure solution of LiSrAlF<sub>6</sub>-III would have been hampered by the presence of diffraction from both phases II and III in each measured diagram above 3 GPa. A single-phase sample of LiSrAlF<sub>6</sub>-III was thus obtained by annealing at 5.7 GPa and 423 K for 3 h. Subsequently,



Figure 1. Selected powder patterns of  $LiSrAlF_6$  upon compression with argon as a pressure medium. Reflections due to argon are marked with stars.



Figure 2. Selected powder patterns of  $LiSrAlF_6$  upon decompression after annealing at 423 K for 3 h with argon as a pressure medium. Reflections due to argon are marked with stars.

the sample was allowed to cool down to room temperature and the pressure was lowered to about 3.0 GPa. Diffraction patterns were recorded at 3.6 and 2.6 GPa. They were found to be



**Figure 3.** Pressure dependence of lattice parameters and unit cell volumes in  $\text{LiSrAlF}_6$  up to 6.0 GPa. Full, half open and open symbols stand for the  $\text{LiSrAlF}_6$ -II and  $\text{LiSrA}_6$ 

entirely due to the phase III (figure 2). At still lower pressures, LiSrAlF<sub>6</sub>-III transforms back to LiSrAlF<sub>6</sub>-II. The pattern collected at 2.6 GPa after annealing upon decompression was used for indexing. The first 20 reflections were indexed using the program DICVOL91 [9] with a monoclinic unit cell: a = 5.1542(6) Å, b = 9.795(1) Å, c = 8.126(1) Å,  $\beta = 90.29(1)^{\circ}$ , V = 410.3(2) Å<sup>3</sup>, M(20) = 14.0, F(20) = 42.9(0.0097, 48). The systematic absences indicated that the space group is  $P2_1/c$  [10].

The pressure dependence of the lattice parameters in LiSrAlF<sub>6</sub>-I( $P\overline{3}1c, Z = 2$ ), LiSrAlF<sub>6</sub>-II( $P2_1/c, Z = 4$ ) and LiSrAlF<sub>6</sub>-III ( $P2_1/c, Z = 4$ ) is plotted up to about 6 GPa in figure 3. The compression data for both LiSrAlF<sub>6</sub>-I and LiSrAlF<sub>6</sub>-II to 3 GPa could be fitted by a common Birch equation of state [6, 11], resulting in the zero-pressure bulk modulus  $B_0 = 49(1)$  GPa (B' = 4.0 and  $V_0 = 229.51$  Å<sup>3</sup>). However, there is a discontinuity in the pressure evolution of the unit cell volumes at the phase transition II  $\rightarrow$  III with a relative volume change of 6% at 3.0 GPa. This result shows that the phase transformation II  $\rightarrow$  III is of first order and that major structural rearrangements can be expected, despite the fact that LiSrAlF<sub>6</sub>-II and LiSrAlF<sub>6</sub>-III have the same space group and the same number of formula units in the unit cell ( $P2_1/c, Z = 4$ ).



**Figure 4.** Observed, calculated and difference x-ray powder patterns for LiSrAlF<sub>6</sub>-III ( $P2_1/c$ , Z = 4) at 2.6 GPa as obtained after the final Rietveld refinement. Vertical markers indicate the positions of Bragg reflections. The  $2\theta$  regions  $14.40^{\circ}-14.88^{\circ}$  and  $16.70^{\circ}-17.30^{\circ}$ , in which two reflections due to argon are observed, were excluded from the Rietveld refinement.

The crystal structure of LiSrAlF<sub>6</sub>-III was partially solved with the global optimization algorithm FOX [12] against the pattern collected at 2.6 GPa upon decompression (figures 2 and 4). Since the ratio of the number of observed Bragg peaks to the number of structural parameters was expected to be very low (50 reflections, all atoms in the general positions 4e), the number of optimized parameters was drastically reduced by introducing an octahedron around the Al atoms with Al–F bond distances initially equal to 1.8 Å, i.e. equal to the average distances in the ambient pressure structure LiSrAlF<sub>6</sub>-I ( $P\overline{3}1c$ , Z = 2) [2] and in pressure-induced LiSrAlF<sub>6</sub>-II ( $P2_1/c$ , Z = 4) [6]. Bonding and angular distortions of the AF<sub>6</sub> octahedra, i.e. the AlF<sub>6</sub><sup>3–</sup> complex anion [1], were accounted for by relaxing delta and sigma parameters in the program FOX [12]. The solution was reached in about 150 000 trial configurations. However, the Li atoms could not be properly located using this method and some of the Li–F distances were anomalously short. Thus, the entire procedure was carried out without the Li atoms to obtain the SrAlF<sub>6</sub><sup>1–</sup> sublattice.

The topological analysis of the globally optimized  $SrAlF_6^{1-}$  sublattice with all the atoms at the general positions 4e was carried out using the program DIRICHLET of the TOPOS package [13]. Voronoi–Dirichlet polyhedra (VDP) for the first coordination spheres of the fluorine sublattice were constructed to determine its geometric and topological characteristics. Each of the six non-equivalent fluorine atoms was chosen in turn to be at the origin of the sublattice in the search for the VDP vertices that represent the voids in the crystal structure, i.e. in the anionic  $F^{1-}$  sublattice. The globally optimized coordinates of the Sr and Al atoms were easily identified as some of the VDP vertices. The coordinates of the remaining VDP vertices and their connectivities, i.e. distances between the voids and the  $Sr^{2+}$ ,  $Al^{3+}$  and  $F^{1-}$ ions, respectively, were further scrutinized to obtain atomic coordinates for the lithium atoms. This procedure was based on the principle that cations tend to be arranged as uniformly as possible in the space available [1]. The only voids for which the hypothetical Li–Li, Li–Sr and Li–Al distances in the cationic sublattice as well as the hypothetical Li–F bond lengths



Figure 5. Projections of the crystal structure of  $\text{LiSrAlF}_6$ -III ( $P2_1/c$ , Z = 4).

were crystallographically acceptable [1, 13], turned out to be the ones with the tetrahedral coordination to the F atoms. The voids with the octahedral coordination possessed too short distances to the  $Sr^{2+}$  and  $Al^{3+}$  cations.

The complete LiSrAlF<sub>6</sub>-III structural model, i.e. the globally optimized SrAlF<sub>6</sub><sup>1-</sup> substructure and the Li<sup>1+</sup> cations from the crystal topology considerations, was subsequently used for the structure refinement against the observed pattern at 2.6 GPa with the Rietveld method using the program GSAS [14] (figure 4). The best fit was obtained at  $R_{wp} = 19.67\%$ ,  $R_p = 9.94\%$ , and  $R(F^2) = 15.61\%$  (the residuals  $R_{wp}$  and  $R_p$  have been calculated with the background eliminated, see the GSAS manual). To reduce the number of structural variables, a rigid AlF<sub>6</sub> octahedron centred at the Al atom was introduced. The GEOMETRY subroutine was used to determine the orthonormal coordinates and rotation angles  $R_1(X)$ ,  $R_2(Y)$ , and  $R_3(Z)$  for the AlF<sub>6</sub><sup>-3</sup> complex anion. The refined parameters for the rigid body were:  $R_1(X)$ ,  $R_2(Y)$  and  $R_3(Z)$  rotation angles, T(X), T(Y) and T(Z) translations, and an isotropic translational tensor ( $T_{11} = T_{22} = T_{33}$ ) in the TLS formalism. The additional variables were: Li and Sr atomic positions, the isotropic thermal parameter for the Sr atom  $U_i/U_e * 100 = 1.6(4)$ , lattice parameters, scale factor and Stephens profile function [15]. The conventional fractional coordinates for all the atoms and selected interatomic distances are given in table 1.

The crystal structure of LiSrAlF<sub>6</sub>-III in different projections is shown in figure 5. It consists of corner-sharing distorted AlF<sub>6</sub> octahedra and LiF<sub>4</sub> tetrahedra forming a three-dimensional network. The shortest AlF<sub>6</sub> inter-octahedral F–F distance is 2.44 Å. The Sr atoms are no longer octahedrally coordinated to the fluorine atoms in a distorted hcp array. Instead, the coordination polyhedron around the Sr atoms could be considered as a largely deformed SrF<sub>12</sub> icosahedron (figure 6). The twelve distances to fluorines in the first coordination sphere of the strontium atoms vary from 2.27 to 3.42 Å, with the average Sr–F distance of 2.75 Å. Three Sr–F bond lengths are larger than 3.0 Å. The Sr–F average for the remaining nine is 2.59 Å. The average Sr–F distance in the SrF<sub>6</sub> octahedra in phases I ( $P\overline{3}1c$ , Z = 2) and II ( $P2_1/c$ , Z = 4) are 2.42 Å [2] and 2.43 Å [6], respectively. The average Li–F bond length of 1.86 Å in the LiF<sub>4</sub> tetrahedra in LiSrAlF<sub>6</sub>-III is shorter than the Li–F distances in LiF<sub>6</sub> octahedra in the phases I (2.02 Å) [2] and II (2.08 Å) [6].

The pressure-induced structure of LiSrAlF<sub>6</sub>-III resembles the structure of the LiBaM"F<sub>6</sub> compounds (M'' = Al, Ga, Cr, V, Fe, or Ti) at ambient conditions [4]. In this type, BaF<sub>12</sub> icosahedra are within a framework of corner-linked LiF<sub>4</sub> tetrahedra and M"F<sub>6</sub> octahedra



Figure 6. SrF12 and BaF12 coordinations in LiSrAlF6-III and LiBaCrF6 [4], respectively.

**Table 1.** Structural parameters for LiSrAlF<sub>6</sub>-III ( $P2_1$ /, Z = 4) at 2.6 GPa—a = 5.1539(7) Å, b = 9.798(2) Å, c = 8.139(1) Å,  $\beta = 90.31(2)^{\circ}$ . Estimated standard deviations are given in parenthesis.

| Atom  | X            | у               | Ζ            |
|-------|--------------|-----------------|--------------|
| Li    | 0.242(26)    | 0.589(16)       | 0.181(17)    |
| Sr    | 0.3206(12)   | 0.1977(6)       | -0.0003(16)  |
| Al    | 0.2221(27)   | 0.9051(14)      | 0.2501(16)   |
| F1    | 0.069(4)     | 0.0753(16)      | 0.2626(31)   |
| F2    | 0.348(4)     | 0.9130(25)      | 0.4512(18)   |
| F3    | 0.4917(34)   | 0.9854(20)      | 0.1633(22)   |
| F4    | 0.095(4)     | 0.8712(26)      | 0.0422(17)   |
| F5    | -0.0862(29)  | 0.8358(21)      | 0.3229(22)   |
| F6    | 0.3792(34)   | 0.7374(16)      | 0.2378(34)   |
|       | Selected     | l distances (Å) |              |
| Li–F1 | 1.67(14)     | Li-F2           | 2.93(15)     |
| Li–F2 | 1.96(15)     | Li–F3           | 2.12(12)     |
| Li–F5 | 2.61(15)     | Li-F6           | 1.68(15)     |
| Sr-F1 | 2.780(27)    | Sr-F1           | 3.214(22)    |
| Sr-F2 | 2.741(24)    | Sr-F3           | 2.620(21)    |
| Sr-F3 | 2.435(20)    | Sr-F4           | 3.422(27)    |
| Sr-F4 | 2.270(19)    | Sr-F4           | 3.107(20)    |
| Sr-F5 | 2.322(20)    | Sr-F5           | 2.903(23)    |
| Sr-F6 | 2.659(29)    | Sr-F6           | 2.563(27)    |
| Al-F1 | 1.848 43(24) | Al-F2           | 1.76048(30)  |
| Al–F3 | 1.749 42(23) | Al-F4           | 1.841 06(31) |
| Al-F5 | 1.829 46(25) | Al-F6           | 1.834 65(24) |

 $(P2_1/c, Z = 4)$ . The packing of M"F<sub>6</sub> octahedra and LiF<sub>4</sub> tetrahedra in LiSrAlF<sub>6</sub>-III and LiBaCrF<sub>6</sub> are very similar. The BaF<sub>12</sub> icosahedra in LiBaM"F<sub>6</sub> at ambient conditions are less distorted than the SrF<sub>12</sub> icosahedron in LiSrAlF<sub>6</sub>-III at high pressures (figure 6). The Ba–F distances in LiBaCrF<sub>6</sub> range from 2.6 to 3.17 Å, with only three B–F bond lengths exceeding 3.0 Å. The average Li–F bond length in the LiF<sub>4</sub> tetrahedra is 1.87 Å.

Galy and Anderson [16] proposed simple high-pressure high-temperature transformation mechanisms of the Li<sub>2</sub>ZrF<sub>6</sub> type ( $P\overline{3}1m$ , Z = 1) through cation rearrangements in the hcp anion array. They also constructed a tentative pressure-temperature phase diagram for the ternary compounds of general formula  $AB_2X_6$ . Accordingly, the Li<sub>2</sub>ZrF<sub>6</sub> structure would be a high-pressure variant of the trirutile  $(P4_2/mnm, Z = 2)$  or Na<sub>2</sub>SiF<sub>6</sub> (P321, Z = 3) types. Moreover, the AB<sub>2</sub>X<sub>6</sub> materials would be expected to transform to the columbite FeNb<sub>2</sub>O<sub>4</sub> structure (*Pbcn*, Z = 4) that is an ordered analogue of the  $\alpha$ -PbO<sub>2</sub> type (*Pbcn*, Z = 4). These phase transitions are analogous to the ones for the  $AX_2$  compounds as the rutile-type phases transform to the  $\alpha$ -PbO<sub>2</sub> structure at high pressures [17, 18]. In each of these structures, all the cations are octahedrally coordinated to the anions [16–19]. The transformations trirutile  $\rightarrow$  Li<sub>2</sub>ZrF<sub>6</sub> or Na<sub>2</sub>SiF<sub>6</sub>  $\rightarrow$  Li<sub>2</sub>ZrF<sub>6</sub> would correspond to the substitution of the M' atoms in the LiM'M"F<sub>6</sub> fluorides at atmospheric conditions. The LiM'M"F<sub>6</sub> compounds (M" = Al, Ga, V, Cr, Fe) have the trirutile or Na<sub>2</sub>SiF<sub>6</sub> structures at atmospheric conditions when the M' atoms (M' = Mg, Mn, Co, Ni or Zn) are relatively small, while the colquiritie structure, an ordered variant of the Li<sub>2</sub>ZrF<sub>6</sub> type, occurs when the M' atoms are Ca or Sr (M'' = Al, Ga or Cr) [2, 4].

It has been recently shown that the mechanism of phase transitions in the AB<sub>2</sub>X<sub>6</sub> compounds through cation rearrangements in the octahedral voids of the anion hcp array at high pressures and high temperatures as proposed by Galy and Anderson [16] is too limited [20]. Li<sub>2</sub>ZrF<sub>6</sub> transforms into a polymorph related to the Li<sub>2</sub>TbF<sub>6</sub> type ( $P2_1/c$ , Z = 4) [20, 21], in which the zirconium atoms have a bicapped trigonal prismatic coordination forming edgesharing chains along the *a* axis. Alternatively, the polyhedron around the Zr atoms can be described as a distorted Archimedean square antiprism. The Li<sup>1+</sup> cations are in two types of coordination: octahedra and square pyramids. The Li<sub>2</sub>ZrF<sub>6</sub> structure of the Li<sub>2</sub>TbF<sub>6</sub> type [20] could be compared with the one of  $\gamma$ -Na<sub>2</sub>UF<sub>6</sub> (*Immm*, Z = 2), derived from the ordered fluorite structure [21]. The cubes around the U atoms correspond to the Archimedean antiprisms in the Li<sub>2</sub>TbF<sub>6</sub> type due to displacements of fluorines in the (*a*, *c*) planes.

The results of our studies on the high-pressure behaviour of LiSrAlF<sub>6</sub> also demonstrate the deficiencies of the previously proposed P-T phase diagram for the AB<sub>2</sub>X<sub>6</sub> compounds [16]. The pressure-induced coordination change around the strontium atoms during the phase transitions LiSrAlF<sub>6</sub>-I  $\rightarrow$  LiSrAlF<sub>6</sub>-II  $\rightarrow$  LiSrAlF<sub>6</sub>-III is associated with the decrease of the coordination number of the lithium atoms from 6 to 4. These transformations correspond to the ones at ambient conditions due to the increase of the ionic radii for the Sr<sup>2+</sup> and Ba<sup>2+</sup> cations in the series LiSrAlF<sub>6</sub>-II and LiBaM''F<sub>6</sub> (M'' = Al, Ga, Cr, V, Fe or Ti) [2, 4]. The structure of LiSrAlF<sub>6</sub>-III could be quenchable to ambient conditions when the Sr atoms are partially substituted by the Ba atoms in the solid solution series LiSr<sub>1-x</sub>Ba<sub>x</sub>AlF<sub>6</sub>. The pressure-induced coordination changes in pure LiSrAlF<sub>6</sub> as well as the high-pressure synthesis of the Li(Sr, Ba)AlF<sub>6</sub> compounds should thus yield materials with higher cross sections for dopant optical emissions [2].

#### Acknowledgment

Experimental assistance from the staff of the Swiss-Norwegian Beamlines at ESRF is gratefully acknowledged.

#### References

- [1] Peresypkina E V and Blatov V A 2003 Acta Crystallogr. B 59 361
- [2] Yin Y and Keszler D A 1992 Chem. Mater. 4 645

- [3] Ono Y et al 2001 J. Cryst. Growth 229 505
  Pawlak D A et al 2001 J. Cryst. Growth 233 699
  Martínez Vázquez R et al 2002 J. Cryst. Growth 237–239 894
- [4] Babel D 1974 Z. Anorg. Allg. Chem. 406 23
  Viebahn W and Babel D 1974 Z. Anorg. Allg. Chem. 406 38
- [5] Burkhalter R, Dohnke I and Hulliger J 2001 Prog. Cryst. Growth Charact. 42 1
- [6] Grzechnik A, Dmitriev V, Weber H-P, Gesland J-Y and van Smaalen S 2004 J. Phys.: Condens. Matter 16 1033
- [7] Hammersley A P, Svensson S O, Hanfland M, Fitch A N and Häusermann D 1996 High Pressure Res. 14 235
- [8] Piermarini G J, Block S, Barnett J D and Forman R A 1975 J. Appl. Phys. 46 2774 Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
- [9] Boultif A and Louer D 1991 J. Appl. Crystallogr. 24 987
- [10] Laugier J and Bochu B, CHEKCELL http://www.inpg.fr/LMGP
- [11] Birch F 1978 J. Geophys. Res. 83 1257
- [12] Favre-Nicolin V and Cerny R 2002 J. Appl. Crystallogr. 35 734
- [13] Blatov V A and Shevchenko A P 2003 Acta Crystallogr. A 59 34
- [14] Larson A C and von Dreele R B 2000 GSAS: General Structure Analysis System Los Alamos National Laboratory
- [15] Stephens P W 1999 J. Appl. Crystallogr. 32 281
- [16] Galy J and Andersson S 1971 J. Solid State Chem. 3 525
- [17] Hyde B G and Andersson S 1989 Inorganic Crystal Structures (New York: Wiley)
- [18] Leger J M and Haines J 1997 Eur. J. Solid State Inorg. Chem. 34 785
- [19] Müller U 1998 Z. Anorg. Allg. Chem. 624 529
- [20] Grzechnik A and Gesland J-Y 2003 Z. Kristallogr. NCS 218 3
- [21] Laligant Y, Le Bail A, Ferey G, Avignant D and Cousseins J C 1988 Eur. J. Solid State Inorg. Chem. 25 551 Guillot M, El-Ghozzi M, Avignant D and Ferey G 1992 J. Solid State Chem. 97 400