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We have studied the high pressure polymorphism of Gapressures up to 60 GPa and temperatures to
~1800 K in a laser-heated diamond anvil cell. We have synthesized RbO,-type (space groufPbcn phase
of GeO, and demonstrated that it is the stable post-Gdgpe (space groug®Pnnm polymorph at pressures
above 44 GPa. The-PbG,-structured Ge®, with a bulk modulus of 25&) GPa, is denser than CaQlype
by 1.6% at 60 GPa. Our study shows that group-IV element dioxides,(S3@0,, SnG,, and PbQ) have a
common sequence of high-pressure structural transformations: rutile»@p€b-type= a-PbO,-type.
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The great interest in the polymorphism of Ge€mes dicted for silica SiQ.**~*" The second order transition from
from both the fundamental point of a possible common serutile- to CaC}-type phases of GeOhas been reported at
quence of high pressure structural transformations 0p5-27 GPa and room temperatd?e?® An orthorhombic
group-1V element dioxides (SiQ GeQ,, SnG,, and PbQ),  high pressure phase of Gg@as synthesized at pressure
and practical application as a material with unique optical~-50 GPa and 1300 K by Ming and ManghnéﬁHowever,
properties. There are two well established polymorphs ofccording to Ming and Manghndhithe x-ray diffraction
GeQ, at ambient pressurex-quartz and rutile-type structures patterns of quenched samples are not éh®bO, phase of
with fourfold- and sixfold-coordinated germanium ions, re- GeO,. Evidence of coexisting rutile and disordered
spectively. The rutile structure of Gg@s stable under am- Fe,N-type structures of GeQup to 32 GPa after heating of
bient conditions and transforms tequartz at 1280 ¥.The  vitreous Ge@ at ~1300 K have also been report&df?
high pressure behavior of both the quartz and rutile phases @ompression of rutile-structured Ge@® ~36 GPa and sub-
Ge(; has been studied intensively for the last three decadesequent laser annealing af1300 K, as described by Haines
because its structure is believed to display the high pressugg al,!° also does not result in the transformation of
properties of geologically important silica at relatively mod- caClp-structured Ge@ to the a-PbO,-type phase. Laser
erate pressurésHowever, there are inconsistencies in theheating above 43 GPa of both monoclinic structufed
results of high pressure phase transformations of G@&©  quartz-type Ge@starting materiglor CaCl-type structured
ported by different groups. phases(rutile or vitreous glass starting materipiesults a

A phase transition of--quartz-type Ge@ above 6 GPa mixture of the CaGl and FgN-type phase$® At pressures
has been observed with various techniques: x-ray diffractionyp to 45 GPa and temperatures up to 2300 K, @nal?°
extended x-ray absorption fine structdEXAFS), and infra-  observed only the Ca&lype post-rutile phase. In summary,
red and Raman spectroscopy? It has been established that despite extensive studies of GeCa high pressure polymor-
transformation results in an increase of the Ge coordinatiophism of GeQ remains unclear. No evidence of the theoreti-
number with pressure from 4 to 6. The amorphous structureally predicteda-PbQO, phase has been reported. In this pa-
of this high pressure phase efquartz-type Ge@above 6 per we reportn situ x-ray studies of phase transformations
GPa has been reported by several grouipdheoretical mo-  of GeO at high pressures and temperatures, direct synthesis
lecular dynamic studies indicate that under hydrostatic comef «-PbO,-type GeQ from the CaCJ-structured phase, and
pression a pressure-induced amorphization of quartz-typstructural refinement of GeQolymorphs up to 60 GPa.
Ge(Q originates from the mechanical instability of the quartz  In our high pressure experiments quartz-type Ge®
lattice®® Meanwhile, a crystalline high pressure phase ofpowder(Alfa, purity 99.9999% was used. The cell constants
a-quartz-type Ge@with an undetermined structure was ob- (space group P3,2I, Z=3) were found to bea
served by several investigatdts® and later a monoclinic =4.9862(8) A andc=5.6440(4) A, in good agreement
structure (space groupP2,/c, Z=6) of this phase was with literature data. Various types of diamond anvil cells
reported:>**The posta-quartz Ge@ monoclinic-type phase (membrane, symmetrical, and four-piwere used for pres-
was found to be metastable up to 50 GPa at roomsure generation up to60 GPa. The samples were loaded in
temperaturé® the 100—150«m holes in stainless steel or rhenium gaskets

Recentab initio calculations predict following sequence preindented to a thickness of 30—4m. Platinum-black
of phase transformations of GegO rutile=(19 GPa  powder(1-3 wt.% was mixed with the GeQin order to
CaCh= (36 GPay-PbQ,= (65.5 GPaPa3 (pyrite).* Such  absorb laser radiation for heating and to provide an internal
phase transitions were either observed, or theoretically pregressure calibrant for high temperature experiments. The
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FIG. 2. (Color online Ratio of relative intensities of the stron-
gest reflections fromy-PbQ,- and CaCJ-type structures of GeQD
Vs pressure at room temperat®) and after laser heatin@l, A)
at 1600+ 100 K (at 60 GPa the temperature was 1800 K).

crystalline phase was observed to at least 52 GPa. During
laser heating, as the temperature was increased to 1600
+100 K, the gradual transformation of the monoclinic phase
directly to the orthorhombic structure was observed at 36.4
GPa[Fig. 1(c)]. The high pressure phase has the Ga@be
structure(space groug’nnm Z=2). The lattice parameters

at 36.4 GPa, for example, a=4.2617(4) A, b
=4.1268(2) A, ant=2.7817(4) A, and unit cell volume

of 14.731) cm’/mol is just slightly smaller than that reported

FIG. 1. (Color onling Integrated x-ray diffraction spectra of for the same high pressure phadet.909) cm’/mol at 36
various Ge@ phases collected at different pressure-temperaturgspg (Ref. 19 obtained by pressurizing rutile-type Ge@t
conditions:(a) starting materiak-quartz-type at ambient conditions quasihydrostati¢methanol-ethanol-water pressure medium

after loading in a DAC(b) Monoclinic-P2, /c-type structure at 34
GPa at room temperatur@) CaCl-type structure at 36.4 GPa after
laser heating at 16@0100 K. (d) Mixture of a-PbOs-type (shown

by indices and CaCJ-type structures at 44.6 GPa after laser heat-
ing at 1600= 100 K. (e) Sample recovered from 60 GPa after laser

heating at 180& 100 K.

conditions. Detailed results of high-and -T behaviors of
monoclinic and orthorhombic phases will be published else-
where.

On further compression to 41 GPa and laser heating at
~1600 K the reflections from a new high pressure phase
started to grow. The relative intensities of the reflections cor-

equations of state of Pt or Au, and/or ruby luminescenceresponding to the Caglstructured phase decreased with in-
were used for pressure measurements in ambient temperatugkeasing pressuréFig. 2). Above 44 GPg[Fig. 1(d)] the

experimentg3

diffraction intensities from the new phase are greater than

High resolution angle dispersive x-ray diffraction experi- those from the CaGltype phaséFig. 2), although the coex-

ments were performed at the Advanced Photon So/&B&)
at Argonne National LaboratoffGSECARS, sector 13, Chi-

istence of both phases was observed up to 60 GPa.
The structure of the new phase is an orthorhombic

cago, ll) and the European Synchrotron Radiation Facility «-PbO, type (Fig. 3). The crystal structure af-PbO, (Pbcn

(ESRF, ID30 and SNBL beamlines, Grenoble, Frangeng

space group symmetincan be described in terms of a hcp

an on-line image plate or a CCD detector. Details of thepacking of oxygen with one-half of the available octahedral

experiments are described in our earlier publicatfdnat

interstices occupied by germanium ions to form 2 zigzag

the APS the double-sided laser-heating technique, with a lachains of Ge@ edge-sharing octahedra. In the case of the
ser spot of 20—4Qum, was used® The temperature was CaCh (Pnnm or rutile (P4,/mnn) structures, germanium
measured with a Kaiser holographic spectrometer coupletbns are arranged in such a way as to generate straight chains
with a CCD. The laser heating at ESRF was carried out usingf edge-sharing octahedra, which are corner linked to form a

a Nd-YAG (yttrium aluminum garnetlaser A =1064 nm,

17 W).

Examples of diffraction spectra integrated witm2p

three-dimensional network with hcp or distorted hcp arrays
of oxygen, respectivel§/. The molar volume ofr-Pb0O, type
is smaller than CaGltype: at 44.5 GPa the difference is

softwaré® are shown in Fig. 1. The high pressure induced1.4%[14.361) and 14.565) cm®/mol, respectively, and at
phase transformation of am-quartz-type structure of GeO 60 GPa it is 1.6%413.890) and 14.121) cm’/mol, respec-

to a poorly crystalline monoclinic structurespace group
P2,/c)!® phase is detected above 7 GFg. 1(b)]. This

tively]. The molar volume versus pressure data were fitted
using a third-order Birch-Murnaghan equation of state with
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FIG. 4. (Color onling Phase pressure boundary vs metal ionic
FIG. 3. (Color onling Rietveld full profile refinement of the radius for the group-1V metal dioxidéthe solid lines are guides to
a-PbO,-type phase of GeDat 60 GPa after annealing at 1800 the ey@. Data for pyrite-type structure of SidRef. 17 and GeQ
+100 K. (Ref. 19 are theoretically predicted. Experimental data are from
Refs. 31 and 33-38, and this study.

K’ fixed to 4%° The fit gave values of the bulk modulus for gjrection is lost, and a lattice vector is almost doubled with
a-PbQ, and rutile-type phases of 288 and 2413) GPa,  rggpect to the Caglstructure. The higher density of the

respectively, in _good agreement with bulk modulus pf(%o a-Pb0, structure(compared to th@nnmtype arrangemeht
GPa for the rutile-type phase of Ge@ported by Haine§’ allows a greater oxygen-oxygen separafibihe finite vol-

To determine the relative phase ‘C.’tab'“ty of theume difference1.4% at 44.5 GPa, for examplindicates its
a-PbO,-type structure, a reversal experiment was con

ducte e pressre was eeased om 44.5 0 1.3 GREL 0 ENAreer, The e o taneormaton does o
After laser heating at~1600 K the relative intensity of y P ’ d 9

a-PbG; reflections decreased by a factor-el5 (Fig. 2). In activation energy to induge cations displacements or as has
a separate experiment, heating of the monoclitag /c-type ~ °€€n Proposed for SpOwith a rutile toa-PbG, transition
phase of GeQat 39.5 GPa and-1600 K results in almost via a Pl'lzlllsa; |ntermed|at§ phase formally identical .to
the same ratio ofr-PbO, to CaCl-type phases as for the baddeleyite!32Our observatlpn of the increasing proportion
decompressed and heated one at 41.3 GPa. CompressiorPhtthe @-Pb0; type phase with respect to the CaGlruc-
room temperature of the sample heated at 41 GPa results {Hred phase, even at room temperature with increasing pres-
the growth of thm_Pboz_type phase(ﬁg 2. Laser heating sure, as well as the hlgher densitycobeQ modification of
at 60 GPa a initiated significant increase in the amount of th&€0Q,, lead us to conclude that the stable phase of GieO
a-PbQ,-structured Ge® (Fig. 2. On decompression at the pressure range of 44—60 GPa is th@®bQ,-type struc-
room temperature from 60 to 29 GPa the proportion ofture. Thus, theoretical simulatioffsof the high pressure be-
CaCl- and a-PbO,-type GeQ was not changed, but trans- havior of GeQ are in good agreement with our experimental
formation of a CaC} to a rutile-type structure was observed results.
at ~27 GPa. At ambient pressure, a mixture of rutile-type The observation of the-PbO, phase for Ge@supports a
and a-PbO,-type structures was detected in almost equalpossible common sequence of high pressure induced trans-
proportions[Fig. 1(e)] with molar volumes of 16.6%) and formation of group-IlV  element dioxides. The
16.418) cm’/mol, respectively. a-PbO,-structured phases have been reported for the analo-
Though a theoretical calculatibhpredicts a single stable gous metal dioxides: SiQbetween 40 and 80 GPa, depend-
phase in a pressure range of 36—-65 GPa, we have observer) on starting material and conditions of highand T
the coexistence of both Cagland a-PbO,-type structured treatmeny,®3~3> SnQ, (at ~12 GPa,3* and PbQ (at 1.3
GeQ, up to 60 GP4Fig. 1(d)]. The nonhydrostatic condi- GPa.*” In the cases of SiQ GeO,, and Sn@ even with
tions and temperature gradients in laser-heated diamond atemperature treatment at high presstitésa wide range of
vil cells (DACs) could be the one of reasons for incomplete coexistence of orthorhombic Ca€land a-PbO,-type struc-
transformation toa-PbO,-type GeQ, especially near the tures have been observed. Figure 4 illustrates the systematic
diamond surface, where the temperature can drop by a facttigh pressure behavior of group-IV dioxides that all adopt
of 52°%0|n contrast to the rutile-Cagitype second order the rutile-type structure with a precise linear relationship be-
phase transition, when tetragonal symmetry breaks due twmveen the ionic radii of the cation and the lattice constants
distortions of O-Ge-O bond angles, but the Ge ions reside andc.®
their previous equilibrium positions, the Ca&la-PbO, In summary, x-rayin situ studies show that on compres-
phase transformation is accompanied by a large displacemesibn at room temperatukequartz-type Ge@transforms to a
of the cations. The alignment of the octahedra alongche poor crystalline phase with monoclinic structufepace
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groupP2,/c) at 7 GPa, and this exists at least up to 52 GPathe «-PbQ,-type reflections significantly increased with in-

A temperature induced transformation of the monocliniccreasing pressure and temperature. ®iBbO,-type struc-
phase to the Cagltype (space grougPnnmj at pressures up ture of GeQ is quenchable and denser than the rutile-type by
to 36.4 GPa was detected. We experimentally observed thie 4% densities are 6.30) and 6.279) g/cnT, respectively

first order phase transformation of the Ca@lpe structure at ambient pressure. Our study shows that group IV element
of GeG, to the a-PbhO,-type (space grougPbcn starting at  dioxides (SiQ, GeQ,, SnG,, and PbQ) have a common

41 GPa. A mixture of the Caglype and then-PbO,-type  sequence of high-pressure structural transformations:
were found to exist up to 60 GPa, but the relative intensity ofrutile-type= CaCl-type= a-PbO,-type.
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